

KEiTI JChip

Table of Contents

I. Introduction
II. Strength test
III. Bending test
IV. Gross-sectional analys is

I. Introduction

Introduction

- Specimen: Multi-Layer Ceramic Capacitor (1005, 1608 size)
- Test:
- Strength test
- Bending test with PCB
- Cross-sectional observation
- Test term: 2013. 12. $01^{\text {~ 2104. 2. } 03}$
- Test environment: $(25 \pm 5)^{\circ} \mathrm{C}$, Below 75% room humidity
- Test apparatuses:
- Precision impedance analyzer (4294A, Agilent, USA)
- Material testing system (MTS858, MTS, USA)
- Scanning electron microscopy (Quanta 3D DualBeam, FEI, Netherland)
- Etc: Blind test
- Contact: Lee, Ju Ho 芭 +82-31-789-7282 / leejuho@keti.re.kr

Introduction

- Test apparatuses:
- Precision impedance analyzer (4294A, Agilent, USA)

Introduction

- Test apparatuses:
- Material testing system (MTS858, MTS, USA)

Introduction

- Test apparatuses:
- Scanning electron microscopy (Quanta 3D DualBeam, FEI, Netherland)

Strength test method/Regulation

- Test standard: EIAJ ET-7403
- According to "EIAJ ET-7403", the strength test was performed using MTS858 material testing system.

- Regulation

- 10 N was applied to the sample during 10 second. After testing, capacitance chan ge value should be small(within individual specification).

(Schematic diagram of strength test)

Bending test method/Regulation

- Test standard: JEITA ET-7409-104A
- Basically, according to "JEITA ET-7409-104A", the bending test was performed using MTS858 material testing system.
- Etc:
- Due to the limitation of apparatus, we measured force (kN) to bend the PCB and displacement (mm) when capacitance was changed to $\pm 10 \%$.
- Capacitance of some MLCCs were not changed up to $\pm 10 \%$ even the PCB bended up to 20 mm . In this case, we only measured displacement of PCB and capacitance after bending test.
- Moving speed of indenter: $10 \mathrm{~mm} / \mathrm{min}$ (up to 20 mm)

(Schematic diagram of bending test)

Layout of PCB
(Image of fabricated PCB)

Chip size(mm)	A		\square	\square
1005	n	-	n	c
$1008-1$	18	4	(19)	易
$1608-2$	(1)	I	[10.	In

	Spec.	A	B	C	D
1005	SEE(mm)	$1.0 \times 0.5 \times 0$.	$1.0 \times 0.5 \times 05$	$1.0 \times 0.5 \times 0.5$	$1.0 \times 0.5 \times 05$
	Capacitanoe	$0.1 \mathrm{uF} \pm 10 \%$	$0.1 \mathrm{uF} \pm 10 \%$	$0.1 \mathrm{uF} \pm 10 \%$	0.1 uF $\pm 10 \%$
	Voltage	10VDC	10VDC	10VDC	10VDC
	Temp chara	$\times 7 \mathrm{R}$	B	$\times 7 \mathrm{R}$	X7R
	Toprange	$-55 \sim 125^{\circ} \mathrm{C}$	$-25 \sim 85^{\circ} \mathrm{C}$	$-55 \sim 125^{\circ} \mathrm{C}$	$-55 \sim 125^{\circ} \mathrm{C}$
	Soldering tem.	$260 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$270 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$260 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$270 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$
1608-1	SEE (mm)	$1.6 \times 0.8 \times 0.8$	$1.6 \times 0.8 \times 08$	$1.6 \times 0.8 \times 0.8$	$1.6 \times 0.8 \times 08$
	Capacitance	$100 \mathrm{pF} \pm 5 \%$			
	Voltag	50VDC	50 VDC	50 VDC	50 VDC
	Temp chara	NPO	CH	NPO	COG
	Toprange	$-55 \sim 125^{\circ} \mathrm{C}$	$-20 \sim 125^{\circ} \mathrm{C}$	$-55 \sim 125^{\circ} \mathrm{C}$	$-55 \sim 125^{\circ} \mathrm{C}$
	Soldering tem.	$260 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$270 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$260 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$270 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$
1606-2	SEE (mm)	$1.6 \times 0.8 \times 0.4$	$1.6 \times 0.8 \times 0.4$	$1.6 \times 0.8 \times 0.5$	$1.6 \times 0.8 \times 08$
	Capacitance	0.1uF $+80 \% /-20 \%$	$0.1 \mathrm{uF}+80 \% /-20 \%$	0.1uF+80\%/-20\%	$0.14 \mathrm{~L}+80 \% /-20 \%$
	Voltase	25VDC	25 VDC	25 VDC	25 VDC
	Temp chara	55 V	F	Y5V	Y5V
	Toprange	$-25 \sim 85^{\circ} \mathrm{C}$	$-25 \sim 85^{\circ} \mathrm{C}$	$-30 \sim 85^{\circ} \mathrm{C}$	$-30 \sim 85^{\circ} \mathrm{C}$
	Soldering tem.	$260 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$270 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$260 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$	$270 \pm 5^{\circ} \mathrm{C} / 10 \mathrm{sec}$

II. Strength test

A社 1005

〈Test result>

Sample		1 KHz			1 MHz		
		Before (nF)	After (nF)	Rate of change (\%)	Before (nF)	After (nF)	Rate of change (\%)
Company A 1005 (@ 1 Vrms)	No. 1	100.95	97.97	-2.95	89.07	86.56	-2.82
	No. 2	97.42	95.43	-2.04	86.27	84.36	-2.21
	No. 3	98.33	97.12	-1.23	86.82	85.93	-1.03
	No. 4	97.69	96.65	-1.06	86.57	85.08	-1.72
	No. 5	98.07	97.86	-0.21	86.85	86.58	-0.31
	No. 6	95.74	95.16	-0.61	84.82	84.10	-0.85
	No. 7	98.61	95.17	-3.49	87.07	84.25	-3.24
	No. 8	97.69	97.17	-0.53	86.62	86.05	-0.66
	No. 9	98.82	96.66	-2.19	87.27	85.40	-2.14
	No. 10	98.07	96.72	-1.38	86.85	85.41	-1.66
Avg. rate of change (\%)=				-1.57			-1.66

<Judgement>

The test results is satisfied with regulation.

B社 1005

〈Test result>

Sample		1 KHz			1 MHz		
		Before (nF)	After (nF)	Rate of change (\%)	Before (nF)	After (nF)	Rate of change (\%)
Company B1005(@ 1 Vrms)	No. 1	99.24	96.35	-2.91	87.44	86.05	-1.59
	No. 2	97.28	96.26	-1.05	86.75	86.60	-0.17
	No. 3	96.43	95.96	-0.49	85.75	85.42	-0.38
	No. 4	97.38	93.97	-3.50	86.94	84.07	-3.30
	No. 5	95.79	94.03	-1.84	85.59	84.03	-1.82
	No. 6	96.65	96.32	-0.34	86.77	86.52	-0.29
	No. 7	96.67	95.84	-0.86	86.45	85.38	-1.24
	No. 8	98.26	93.90	-4.44	87.77	84.01	-4.28
	No. 9	97.34	96.39	-0.98	87.12	85.97	-1.32
	No. 10	98.63	96.27	-2.39	87.93	86.62	-1.49
Avg. rate of change (\%)=				-1.88			-1.59

<Judgement>

The test results is satisfied with regulation.

C社 1005

<Test result>

Sample		1 KHz			1 MHz		
		Before (nF)	After (nF)	Rate of change (\%)	Before (nF)	After (nF)	Rate of change (\%)
Company C 1005 (@ 1 Vrms)	No. 1	94.02	92.46	-1.66	81.74	80.35	-1.70
	No. 2	93.95	93.39	-0.60	81.74	81.36	-0.46
	No. 3	96.26	95.43	-0.86	83.73	83.14	-0.70
	No. 4	95.24	94.53	-0.75	82.71	82.16	-0.66
	No. 5	94.12	93.76	-0.38	81.98	81.56	-0.51
	No. 6	99.63	92.41	-7.25	86.77	80.29	-7.47
	No. 7	95.27	98.95	3.86	84.32	86.45	2.53
	No. 8	95.29	95.56	0.28	82.16	83.34	1.44
	No. 9	96.57	96.17	-0.41	84.11	83.76	-0.42
	No. 10	98.09	97.36	-0.74	85.02	84.45	-0.67
Avg. rate of change (\%)=				-0.85			-0.86

<Judgement>

The test results is satisfied with regulation.
However, No. 6 result is close to a limit value $(\pm 10 \%$).

D社 1005

<Test result>

Sample		1 KHz			1 MHz		
		Before (nF)	After (nF)	Rate of change (\%)	Before (nF)	After (nF)	Rate of change (\%)
Company D 1005 (@ 1 Vrms)	No. 1	110.03	108.67	-1.24	91.53	90.67	-0.94
	No. 2	106.29	105.08	-1.14	88.67	88.12	-0.62
	No. 3	104.41	91.02	-12.82	87.16	80.69	-7.42
	No. 4	105.23	105.22	-0.01	88.01	88.12	0.12
	No. 5	103.74	96.27	-7.20	87.34	86.33	-1.16
	No. 6	105.36	104.91	-0.43	88.07	87.84	-0.26
	No. 7	112.01	96.37	-13.96	93.53	86.36	-7.67
	No. 8	106.72	105.29	-1.34	89.42	88.00	-1.59
	No. 9	106.91	105.13	-1.66	89.43	88.12	-1.46
	No. 10	109.42	108.61	-0.74	91.37	90.67	-0.77
Avg. rate of change (\%)=				-4.05			-2.18

<Judgement>

The test results is not satisfied with regulation. : NG
No. $3 \&$ No. 7 result is over the limit value($\pm 10 \%$).

A社 1608-1

<Test result>

Sample		1 KHz			1 MHz		
		Before (pF)	After (pF)	Rate of change (\%)	Before (pF)	After (pF)	Rate of change (\%)
Company A1608-1(@ 1 Vrms)	No. 1	99.95	99.15	-0.80	98.43	98.42	-0.01
	No. 2	102.22	98.29	-3.85	102.31	99.15	-3.09
	No. 3	100.11	99.64	-0.47	100.31	100.08	-0.23
	No. 4	99.78	99.08	-0.70	100.15	100.15	0.00
	No. 5	100.42	99.10	-1.31	99.51	99.52	0.01
	No. 6	102.56	100.51	-2.00	101.67	101.67	0.00
	No. 7	100.22	98.08	-2.14	99.17	99.15	-0.02
	No. 8	101.57	99.39	-2.15	99.86	99.88	0.02
	No. 9	100.71	99.47	-1.24	100.08	100.07	-0.01
	No. 10	101.34	101.85	0.51	99.78	99.79	0.01
Avg. rate of change (\%)=				-1.41			-0.33

<Judgement>

The test results is satisfied with regulation.

B社 1608-1

〈Test result>

Sample		1 KHz			1 MHz		
		Before (pF)	After (pF)	Rate of change (\%)	Before (pF)	After (pF)	Rate of change (\%)
Company B 1608-1 (@ 1 Vrms)	No. 1	104.32	97.92	-6.13	99.24	99.23	-0.01
	No. 2	105.49	97.02	-8.03	100.51	100.50	-0.01
	No. 3	102.48	94.98	-7.32	96.88	96.87	-0.01
	No. 4	102.31	97.06	-5.13	98.14	98.12	-0.02
	No. 5	108.07	98.99	-8.40	101.99	101.97	-0.02
	No. 6	104.16	96.12	-7.72	98.93	98.92	-0.01
	No. 7	103.59	94.36	-8.91	97.57	97.56	-0.02
	No. 8	106.12	97.53	-8.09	101.02	101.03	0.01
	No. 9	106.51	98.42	-7.60	105.51	100.50	-4.75
	No. 10	104.61	96.28	-7.97	99.32	99.31	-0.02
Avg. rate of change (\%)=				-7.53			-0.48

<Judgement>

The test results is satisfied with regulation.
However, all data except No. 1 \& No. 4 result is close to a limit value($\pm 10 \%$).

C社 1608-1

〈Test result>

Sample		1 KHz			1 MHz		
		Before (pF)	After (pF)	Rate of change (\%)	Before (pF)	After (pF)	Rate of change (\%)
1608-1(@1 Vrms)	No. 1	102.03	93.95	-7.92	96.47	96.46	-0.01
	No. 2	104.74	98.96	-5.52	100.57	100.56	-0.01
	No. 3	102.83	95.14	-7.48	97.35	97.34	-0.02
	No. 4	104.38	97.32	-6.76	99.15	99.15	0.00
	No. 5	104.96	97.12	-7.47	99.34	99.33	-0.01
	No. 6	102.44	94.40	-7.85	96.61	96.60	-0.01
	No. 7	104.81	98.62	-5.90	97.91	100.66	2.80
	No. 8	104.45	94.47	-9.56	98.17	97.03	-1.16
	No. 9	104.77	95.78	-8.58	100.65	97.89	-2.74
	No. 10	103.03	95.10	-7.70	97.03	98.18	1.19
Avg. rate of change (\%)=				-7.47			1.50

<Judgement>

The test results is satisfied with regulation.
However, all data except No. 2 \& No. 4 \&No. 7 result is close to a limit value($\pm 10 \%$).

D社 1608－1

〈Test result＞

Sample		1 KHz			1 MHz		
		Before（pF）	After（pF）	Rate of change（\％）	Before（pF）	After（pF）	Rate of change（\％）
Company D 1608-1 （＠ 1 Vrms）	No． 1	107.94	101.24	－6．21	100.24	100.24	0.00
	No． 2	109.16	102.51	－6．10	101.64	101.63	－0．01
	No． 3	108.51	102.00	－6．00	100.68	100.68	0.00
	No． 4	108.76	102.79	－5．49	101.52	101.50	－0．02
	No． 5	107.34	102.29	－4．71	101.18	101.17	－0．01
	No． 6	108.63	102.54	－5．61	101.17	101.16	－0．01
	No． 7	108.92	102.69	－5．72	101.31	101.29	－0．02
	No． 8	107.19	101.26	－5．53	100.25	100.24	－0．01
	No． 9	106.92	101.56	－5．01	99.38	100.67	1.30
	No． 10	109.54	102.65	－6．29	101.77	101.75	－0．02
Avg．rate of change（\％）＝				－5．67			0.12

〈Judgement＞

The test results is satisfied with regulation．
However，No． $1 \&$ No． 2 \＆No． $3 \& N o .10$ result is close to a limit value（ $\pm 10 \%$ ）．

A社 1608－2

〈Test result＞

Sample		1 KHz			1 MHz		
		Before（ nF ）	After（nF）	Rate of change（\％）	Before（ nF ）	After（ nF ）	Rate of change（\％）
Company A 1608-2 （＠1 Vrms）	No． 1	129.08	123.80	－4．09	98.22	96.01	－2．26
	No． 2	130.85	119.39	－8．76	95.25	93.42	－1．92
	No． 3	127.94	117.47	－8．18	94.17	90.67	－3．72
	No． 4	123.75	119.85	－3．15	96.94	93.46	－3．59
	No． 5	120.55	122.12	1.30	93.24	95.88	2.84
	No． 6	118.14	117.47	－0．57	91.97	90.71	－1．37
	No． 7	117.23	118.91	1.43	89.56	93.47	4.37
	No． 8	117.08	123.72	5.67	94.16	96.39	2.37
	No． 9	124.24	117.89	－5．12	94.84	90.53	－4．54
	No． 10	118.83	119.13	0.25	90.15	93.47	3.68
Avg．rate of change（\％）＝				－2．12			－0．41

〈Judgement＞

The test results is satisfied with regulation．
However，No． $2 \&$ No． $3 \& N o . ~ 8$ result is close to a limit value（ $\pm 10 \%$ ）．

B社 1608-2

〈Test result>

Sample		1 KHz			1 MHz		
		Before (nF)	After (nF)	Rate of change (\%)	Before (nF)	After (nF)	Rate of change (\%)
Company B 1608-2 (@ 1 Vrms)	No. 1	106.44	104.72	-1.62	85.15	84.10	-1.23
	No. 2	120.88	116.49	-3.64	88.93	86.67	-2.54
	No. 3	102.72	100.86	-1.81	81.32	80.53	-0.97
	No. 4	102.77	102.10	-0.66	81.32	82.01	0.85
	No. 5	105.77	104.21	-1.48	83.76	83.20	-0.67
	No. 6	104.94	103.37	-1.50	83.06	82.49	-0.68
	No. 7	102.15	100.45	-1.67	81.52	80.70	-1.00
	No. 8	104.11	102.07	-1.96	83.09	82.04	-1.26
	No. 9	97.41	95.37	-2.09	78.45	77.19	-1.60
	No. 10	102.04	100.64	-1.38	80.94	80.04	-1.12
Avg. rate of change (\%)=				-1.78			-1.02

<Judgement>

The test results is satisfied with regulation.

C社 1608-2

〈Test result>

Sample		1 KHz			1 MHz		
	Before (nF)	After (nF)	Rate of change (\%)	Before (nF)	After (nF)	Rate of change (\%)	
Company C	No.1	103.42	102.48	-0.91	86.37	85.27	-1.28
	No.2	100.34	99.51	-0.83	83.45	82.53	-1.10
	No.3	100.95	99.41	-1.53	84.07	82.63	-1.72
	No.4	95.95	95.71	-0.25	78.96	78.25	-0.90
	No.5	100.08	100.13	0.05	83.07	82.50	-0.68
	No.6	102.49	102.39	-0.10	85.64	84.98	-0.77
	No.7	101.49	99.07	-2.38	85.37	81.84	-4.14
	No.8	95.72	101.08	5.60	79.51	84.17	5.85
	No.9	99.26	101.35	2.11	82.78	84.46	2.03
	No.10	101.24	95.22	-5.95	84.92	78.76	-7.26
Avg. rate of change (\%)=							

<Judgement>

The test results is satisfied with regulation.

D社 1608-2

<Test result>

Sample		1 KHz			1 MHz		
		Before (nF)	After (nF)	Rate of change (\%)	Before (nF)	After (nF)	Rate of change (\%)
Company D	No. 1	89.21	88.28	-1.04	81.37	80.43	-1.15
	No. 2	90.04	89.04	-1.11	82.12	81.17	-1.16
	No. 3	91.12	90.25	-0.95	82.94	82.27	-0.80
	No. 4	90.25	88.52	-1.91	82.12	80.47	-2.01
1608-2	No. 5	89.81	88.99	-0.92	82.06	81.04	-1.24
,	No. 6	92.14	91.02	-1.21	83.75	82.67	-1.29
(@ 1 Vrms)	No. 7	92.12	90.97	-1.25	83.66	82.64	-1.22
	No. 8	90.12	89.09	-1.14	82.21	81.02	-1.44
	No. 9	91.07	90.58	-0.54	83.27	82.67	-0.72
	No. 10	89.04	88.25	-0.88	81.35	80.44	-1.12
Avg. rate of change (\%)=				-1.10			-1.22

<Judgement>

The test results is satisfied with regulation.

Summary

$\begin{aligned} & \text { Sample } \\ & (1005) \end{aligned}$	Test result：1 KHL			Test result 1 KH L		
	Min．value	Max．Value	Avg．value	Min．value	Max．Value	Avg．value
A	－0．21	－3．49	－1．57	－0．31	－3．24	－1．66
	Judg．	Judg： O	Judg \bigcirc	Judg \bigcirc	Judg \bigcirc	Judg
B	－0．34	－3．5	－1．88	－0．17	－4．28	－1．59
	Judg．	Judg： O	Judg O	Judg O	Judg O	Judg O
c	0.28	-7.25	－0．85	－0．42	7.47	－0．86
	Judg O	Judg．\triangle	Judg O	Judg O	Judg \triangle	Judg O
D	－0．01	－13．96	-4.06	－0．26	－7．67	-2.18
	Judg． O	Judg：\times	Judg \triangle	Judg O	Judg \triangle	Judg O

$\begin{aligned} & \text { Sample } \\ & (1608-1) \end{aligned}$	Test result 1 KH L			Test result． 1 KH		
	Min．value	Max．Value	Avg．value	Min．value	Max．Value	Avg．value
A	－0．47	－3．85	－1．41	－0．01	－3．09	－0．33
	Judg．${ }_{1}$	－Judg	＿$\rfloor ⿰ 口 口 \mathrm{dg}$（	Judg O	Judg O	Judg \bigcirc
B	-5.131	－8．91	－7．53	$1-0.01$	－4．75	－0．48
	Judg OI	Judg：\triangle	Judg \triangle	1 Judg	Judg \bigcirc	Judg \bigcirc
C	-5.52	－9．56	－7．47	$1-0.01$	2.8	159
	Judg O_{1}	Judg．\triangle	Judg \triangle	1 Judg	Judg O	Judg \bigcirc
D	-4.71	－6．29	－5．67	$1 \quad 0$	1.3	－0．12
	Judg ${ }^{1}$	Judg．\triangle	Judg \triangle	1 Judg	Judg O	Judg O

$\begin{gathered} \text { Sample } \\ (1608-2) \end{gathered}$	Test result 1 KH			Test result 1 KH L		
	Min．value	Max．Value	Avg．value	Min．value	Max．Value	Avg．value
A	0.25	－8．76	－2．12	－1．37	－4．54	－0．41
	Judg．	Judg： O	Judg O	Judg． O	Judg．	Judg O
B	－0．66	－3．64	－1．79	－0．67	－2．54	－0．12
	Judg） 5	Judg．-	Judg．${ }^{\text {a }}$	－	－Judg．$\bigcirc=$	${ }^{\text {－}}$－udg O
C	0.05	－5．95	－0．42	－0．68	－7．26	I－1．0
	Judg ρ	Judg．\triangle	Judg O	Judg． O	Judg \triangle	Judg O
D	－0．54	－125	${ }^{-1.1}$	$=0.72$	－2．0－	－1．22
	Judg． O	Judg： O	Judg O	Judg O	Judg． O	Judg． O

Company B／C／D strength capability is a little bit low．

II. Bending test

Remarks

1. In the case of bending test using PCB, due to limitations of apparatus, we measured force (kN) to bend the PCB and displacement (mm) when capacitance was changed $\pm 10 \%$.
2. Capacitances of some MLCCs were not changed $\pm 10 \%$ even the PCB bended up to 20 mm . In this case, we only measured displacement of PCB and capacitance after bending test.

A社 1005

〈Test result>

Sample		1 KHz			
		Before (nF)	Force to	Displacement	Capacitance
Company A 1005 (@1 Vrms)	No. 1	95.64	0.6842	5.27	N/A
	No. 2	99.06	0.14361	12.53	N/A
	No. 3	97.94	-	20	99.47
	No. 4	101.26	-	20	103.27
	No. 5	98.71	0.07787	6.35	14.09
	No. 6	97.43	0.08423	6.67	99.04
	No. 7	99.87	0.08739	6.64	83.00
	No. 8	101.58	0.07949	6.16	86.08
	No. 9	100.70	0.07376	5.71	50.05
	No. 10	96.05	0.06457	5.04	77.55

- Note: N/A = Not Available to measure the capacitance of sample
- It may be that inner electrodes of MLCC opened.

<Judgement>

Total 2items are satisfied with regulation.

B社 1005

〈Test result>

Sample		1 KHz			
		Before (nF)	Force to	Displacement	Capacitance
Company B 1005 (@ 1 Vrms)	No. 1	96.11	0.05933	4.83	91.16
	No. 2	95.67	0.05234	3.98	47.75
	No. 3	99.00	0.06389	5.05	99.90
	No. 4	97.67	0.04598	3.58	28.26
	No. 5	98.66	0.04795	3.81	169.05 mF
	No. 6	97.29	0.04724	3.66	15.94
	No. 7	97.20	0.08014	6.3	97.98
	No. 8	96.68	0.05443	4.35	48.18
	No. 9	97.01	0.05728	4.43	64.37
	No. 10	96.93	0.04647	3.59	98.23

- Note: The capacitance value of sample No. 5 is 169.05 mF . It may be that the some inner electrodes were damaged during the bending test. This low capacitance does not mean 'open' or 'short'.
- $\mathrm{C}=\mathrm{Q} / \mathrm{V}=\varepsilon(\mathrm{A} / \mathrm{t})$

Here, $\mathrm{C}, \mathrm{Q}, \mathrm{V}, \varepsilon, \mathrm{A}$, and t are capacitance, electric charge, voltage, dielectric constant, area of electrode, and distance between electrodes, respectively.

<Judgement>

All of items are not satisfied with regulation. : NG

C社 1005

〈Test result＞

〈Judgement＞

Total 4items are satisfied with regulation．

D社 1005

〈Test result＞

Sample	1 KHz					
			Before（nF）	Force to bending（kN）	Displacement (mm)	Capacitance after bending（nF）
Company D	No．1	105.32	0.04805	3.7	45.39	
	No．2	113.64	0.08866	6.87	73.97	
	No．3	115.19	0.04827	3.88	32.79	
	No．4	111.12	0.05693	4.35	35.55	
	No．5	113.91	0.07235	5.64	36.84	
	No．6	111.82	0.05135	4.01	63.40	
	No．7	113.07	0.05631	4.64	11.47	
	No．8	110.48	0.03961	3.17	97.22	
	No．9	109.55	0.04453	3.54	47.50	
	No．10	106.63	0.03941	3.19		

〈Judgement＞

All of items are not satisfied with regulation．：NG

A社 1608-1

<Test result>

Sample	1 KHz				
	Before (nF)	Force to bending (kN)	Displacement (mm)	Capacitance after bending (nF)	
Company A	No.1	101.20	-	20	101.23
	No.2	100.66	0.15874	16.05	100.69
	No.3	101.56	-	20	101.59
	No.4	100.72	-	20	100.77
	No.5	100.10	-	20	100.12
	No.6	101.56	-	20	101.62
	No.7	101.23	-	20	101.24
	No.8	101.16	-	20	101.19
	No.9	101.03	-	20	101.07
	No.10	99.83	-	20	99.86

〈Judgement>

Total 9items are satisfied with regulation.

B社 1608-1

〈Test result>

Sample	1 KHz				
	Before (nF)	Force to bending (kN)	Displacement (mm)	Capacitance after bending (nF)	
Company B	No.1	101.56	-	20	101.61
	No.2	100.94	-	20	100.99
	No.3	100.64	-	20	100.70
	No.4	98.55	-	20	98.60
	No.5	101.02	-	20	101.05
	No.6	99.65	-	20	99.68
	No.7	98.81	0.9096	7.02	90.27
	No.8	101.24	-	20	101.29
	No.9	100.51	-	20	100.54
	No.10	100.61	-	20	100.67

<Judgement>

Total 9items are satisfied with regulation.

C社 1608－1

〈Test result＞

Sample	KHz				
	Before（nF）	Force to bending（kN）	Displacement (mm)	Capacitance after bending（nF）	
Company C	No．1	100.49	0.1419	11.78	100.52
	No．2	97.73	-	20	97.78
	No．3	No．4	97.73	100.04	0.16011
	No．5	99.21	-	18.06	97.77
	No．6	102.70	-	20	100.08
	No．7	99.59	-	20	99.25
	No．8	99.86	-	20	102.76
	No．9	99.87	-	20	99.64
	No．10	98.74	-	20	99.91

〈Judgement＞

Total 8items are satisfied with regulation．

D社 1608-1

〈Test result>

Sample	1 KHz				
	Before (nF)	Force to bending (kN)	Displacement (mm)	Capacitance after bending (nF)	
Company D	No.1	101.61	-	20	101.66
	No.2	101.25	-	20	101.28
	No.3	101.59	-	20	101.65
	No.4	99.71	-	20	99.78
	No.5	101.87	-	20	101.91
	No.6	102.07	-	20	102.13
	No.7	101.83	-	20	101.88
	No.8	102.37	0.07622	6.04	15.107 pF
	No.9	100.68	-	20	100.73
	No.10	99.61	-	20	99.66

- Note: The capacitance value of sample No. 8 is 15.107 pF.

It may be that the some inner electrodes were damaged during the bending test. This low capacitance does not mean 'open' or 'short'.

- $C=Q / V=\varepsilon(A / t)$

Here, $\mathrm{C}, \mathrm{Q}, \mathrm{V}, \varepsilon, \mathrm{A}$, and t are capacitance, electric charge, voltage, dielectric constant, area of electrode, and distance between electrodes, respectively.

<Judgement>

Total 8items are satisfied with regulation.

A社 1608-2

<Test result>

Sample	1 KHz				
	Before (nF)	Force to bending (kN)	Displacement (mm)	Capacitance after bending (nF)	
Company A	No.1	123.87	0.08521	6.81	129.20
	No.2	121.93	-	20	127.47
	No.3	135.23	-	20	144.43
	No.4	129.40	0.08442	6.41	69.83
	No.5	126.87	-	20	129.33
	No.6	130.30	0.09632	7.4	98.97
	No.7	124.83	-	20	128.69
	No.8	133.65	0.08579	6.51	136.44
	No.9	126.88	0.21138	19.35	132.82
	No.10	126.13	-	20	130.92

〈Judgement>

Total 5items are satisfied with regulation.

B社 1608-2

〈Test result>

Sample	1 KHz				
	Before (nF)	Force to bending (kN)	Displacement (mm)	Capacitance after bending (nF)	
Company B	No.1	118.95	-	20	122.68
	No.2	109.18	-	20	113.06
	No.3	112.81	0.09813	7.99	85.43
	No.4	111.21	0.10951	9.6	111.93
	No.5	110.97	0.15288	14.36	94.26
	No.6	106.36	0.07091	5.52	84.72
	No.7	114.10	-	20	115.56
	No.8	111.03	0.06542	5.27	50.52
	No.9	107.60	0.05736	4.68	87.69
	No.10	105.94	0.09163	7.71	109.23

<Judgement>

Total 3items are satisfied with regulation.

C社 1608-2

〈Test result>

Sample	1 KHz				
	Before (nF)	Force to bending (kN)	Displacement (mm)	Capacitance after bending (nF)	
Company C	No.1	124.54	-	20	127.44
	No.2	127.42	-	20	130.88
	No.3	127.63	-	20	130.91
	No.4	128.11	-	20	132.56
	No.5	126.87	0.15311	14.33	128.95
	No.6	125.05	-	20	128.83
	No.7	125.79	-	20	129.06
	No.8	123.26	-	20	127.69
	No.9	125.59	0.16044	16.43	129.87
	No.10	125.36	0.15834	14.51	129.83

<Judgement>

Total 7items are satisfied with regulation.

D社 1608-2

〈Test result>

Sample	1 KHz				
	Before (nF)	Force to bending (kN)	Displacement (mm)	Capacitance after bending (nF)	
Company D	No.1	90.71	0.07413	6.47	86.70
	No.2	90.18	0.07682	7.21	81.77
	No.3	91.51	0.0744	6.85	70.95
	No.4	88.95	0.05113	5.24	11.08
	No.5	89.16	0.05588	5.17	69.64
	No.6	91.26	0.05769	5.54	420.931 mF
	No.7	89.50	0.05931	5.77	7.30
	No.8	90.49	0.07755	7.43	93.18
	No.9	89.71	0.04391	3.54	47.23
	No.10	91.49	0.05798	5.76	188.571 mF

- Note: The capacitance values of sample No. 6 and No. 10 are 420.931 and 188.571 mF, respectively.

It may be that the some inner electrodes were damaged during the
bending test. This low capacitance does not mean 'open' or 'short'.

- $C=Q / V=\varepsilon(A / t)$

Here, $\mathrm{C}, \mathrm{Q}, \mathrm{V}, \varepsilon, \mathrm{A}$, and t are capacitance, electric charge, voltage, dielectric constant, area of electrode, and distance between electrodes, respectively.

<Judgement>

All of items are not satisfied with regulation. : NG

Summary

Sample (1005)	OK (20mm bend)	NG (Over limit)	N/A (Damaged)	No result (Stop test)
A	2 pcs	$6 p c s$	$2 p c s$	
B		5 pcs	1 pc	$4 p c s$
C	4 pcs	2 pcs		$4 p c s$
D		7 pcs		$3 p c s$

Sample $(1608-1)$	OK $(20 \mathrm{~mm}$ bend)	NG (Over limit)	N/A (Damaged)	No result (Stop test)
A	9 pcs			1 pc
B	9 pcs			1 pc
C	$8 p c s$			$2 p c s$
D	$9 p o s$		1 pc	

Sample $(1608-2)$	OK (20mm bend)	NG (Over limit)	N/A (Damaged)	No result (Stop test)
A	5 pcs			5 pcs
B	3 pcs	1 pc		6 pcs
C	7 pcs			3pcs
D		I	3 pcs	2 pcs

<J-chip comment>

Due to all of samples are NG, it is difficult to judge.

All of company items are satisfied with regulation(except a few pcs).

Company D's PCB bending capability level is no good, if compare to another company level.

